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ABSTRACT 

This paper analyses impulse response functions in the context of vector fractionally integrated 

time series. We derive analytically the restrictions required to identify the structural-form 

system. As an illustration of the recommended procedure, we also carry out an empirical 

application based on a bivariate system including real output in the US and, in turn, in one of 

four Scandinavian countries (Denmark, Finland, Norway and Sweden). The empirical results 

appear to be sensitive to some extent to the specification of the stochastic process driving the 

disturbances, but generally a positive shock to US output has a positive effect on the 

Scandinavian countries which tends to disappear in the long run. 
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1. Introduction 

This paper analyses impulse response functions in the context of vector fractionally integrated 

time series. Impulse responses have been studied extensively in the literature, especially in the 

case of Vector Autoregressions (VAR) with series previously detrended using deterministic 

polynomials or first differences. In the latter case the series are normally assumed to have a 

unit root. However, this is a rather restrictive assumption, as the differencing parameter 

required to achieve I(0) stationarity might in fact be any real number, not necessarily an 

integer. In such a case, the series are said to be fractionally integrated. Univariate fractional 

integration has been widely examined in the literature, and many test statistics have been 

developed for estimating and testing the fractional differencing parameter. Examples are 

Sowell (1992), Robinson (1994), Tanaka (1999) etc. in parametric contexts and Geweke and 

Porter-Hudak (1983), Robinson (1995), Shimotsu and Phillips (2004), etc. in semiparametric 

models (see also Beran, 1994, and Baillie, 1996 for surveys of I(d) univariate models). By 

contrast, the literature on multivariate fractional integration models is very limited. A few 

exceptions are Gil-Alana (2003a,b), who extended the univariate frequency domain tests of 

Robinson (1994) to the multivariate case, and Nielsen (2005), who proposed similar tests in 

the time domain. 

 The present paper also adopts a multivariate fractional integration approach to 

examine system dynamics, first deriving the structural form of the model from the reduced 

one, and then computing impulse responses. The outline of this paper is as follows: Section 2 

deals with the identification of the structural parameters in a vector fractionally integrated 

model. Section 3 examines in more detail the bivariate case. Section 4 briefly describes a 

procedure for estimating the parameters in an I(d) system. An empirical application is carried 

out in Section 5, while Section 6 concludes. 
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2. Identification of the structural parameters in a fractionally integrated system 

The starting point is the following structural model: 

...,2,1, == tuyDA tt     (1) 

...,,2,1,1 =+= − tvuGu ttt     (2) 

where A is a (nxn) matrix of parameters; D is an (nxn) diagonal matrix of the form: 
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where d1, d2, …, dn can be any real value; yt is a (nx1) vector of the observable variables; ut is 

a (nx1) vector, which is assumed to be I(0); G is another (nxn) matrix of parameters, and wt is 

a (nx1) structural error vector with zero mean and diagonal variance-covariance matrix V. 

Substituting (1) into (2), we obtain 

...,2,1,1 =+= − tvyDAGyDA ttt    (3) 

implying that 

...,2,1,1
1

1 =+= −
−

− tvAyDAGAyD ttt    (4) 

Using now the lag-operator (i.e. Lyt = yt-1): 

[ ] ...,,2,1,11 ==− −− tvAyDLAGAI tt  

we get 

[ ] ...,,2,1,1111 =−= −−−− tvALAGAIDy tt    (5) 

which is the structural MA(∞) representation of yt. 

 Let us consider now the reduced-form model: 

...,2,1, == tyD tt ε      (6) 

...,2,1,1 =+= − twF ttt εε     (7) 
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where εt is a (nx1) vector of the d-differenced variables; F is a (nxn) matrix of parameters, and 

wt is an I(0) vector with variance-covariance matrix W. Substituting now (6) into (7) 

...,,2,1,1 =+= − twyDFyD ttt    (8) 

implying that 

[ ] ,...,2,1, ==− twyDLFI tt  

and then 

[ ] ,...,2,1,11 =−= −− twLFIDy tt    (9) 

which is the reduced-form MA(∞) representation of yt. 

Note that the structural model in (5) has 2n2+2n parameters to estimate: n 

corresponding to the fractional differencing parameters in D; 2n2 of the two matrices A and G; 

and the n variances in V. On the other hand, the reduced-form MA(∞) representation in (9) 

contains n+n2+n(n+1)/2 parameters: the n d-parameters in D; n2 in F, and n(n+1)/2 parameters 

of the variance-covariance matrix W. Therefore, in order to identify the system we need to 

impose (n/2)(n+1) restrictions in the structural model. N restrictions can be obtained by 

imposing a 1-unit variance in the variance-covariance matrix V in (2). However, (n2-n)/2 

restrictions will still be required. Here, there are two possibilities: one is to impose 

triangularity of the A matrix - this would imply that the contemporaneous and the future 

effects of some of the variables on the others will be zero, which may be a relatively strong 

assumption in some cases. The second approach uses the Blanchard and Quah (1989) 

decomposition, which implies that in the long run some variables have no effect on the others. 

This is illustrated in the following section for the bivariate case.  

 

3. The bivariate model 

Let us consider the following structural bivariate model: 
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where, initially, u1t and u2t are assumed to be serially uncorrelated, mutually orthogonal 

structural disturbances, whose variances are normalized to unity. Note that this model can be 

expressed as: 
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Considering now the transformed disturbances: 
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and using the Binomial expansions in the fractional differencing polynomials in the left-hand-

side of (11), we obtain  

∑=
∞

=
−

0

*
1

)1(
1 ,

j
jtjt uy ψ     (14) 

and 

∑=
∞

=
−

0

*
2

)2(
2 ,

j
jtjt uy ψ     (15) 

where 

,2,1,
)()1(

)()( =
Γ+Γ

+Γ
= i

dj
dj

i

ii
jψ  

where Г(x) stands for the Gamma function and di, i = 1, 2 are the orders of integration of the 

two series. Substituting now (12) into (14) and (13) into (15) leads to: 
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where the impulse response coefficients are: 
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3.1 Identification in a pure vector fractional model 

From the reduced-form system: 
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we can obtain the estimates of d1 and d2 under the assumption that εt is a white noise vector 

process. For this purpose we can use, for example, the parametric approach of Gil-Alana 

(2003a,b) or Nielsen (2005). Note that, once d1 and d2 have been estimated in (20), we can 

directly obtain the coefficients )1(
jψ  and )2(

jψ , j = 0, 1, …, from their Binomial expansions. 

Using now (11) and (20): 
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implying that 
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Note that in this context we have three equations for seven unknowns (a, b, c, d,  and 

 but using the restrictions imposed on the variance-covariance matrix of u
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and  =  = 1), the system given by (21) – (23) reduces to: 
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The new system of equations (24) – (26) is still not identified, as there are only three 

equations for four unknowns. Here economic theory might play a role. One possibility is to 

assume that one of the coefficients (a, b, c or d) is equal to 0 but, in doing so, we lose part of 

the dynamic structure of the system. For example, b = 0 implies, according to (16) and (18), 

that a structural shock to y2t (u2t) has no effect on y1t neither contemporaneously nor in the 

long run. Similarly, if c = 0, a shock to y1t will have no effect on y2t. This is a plausible 

assumption, for instance, in a bivariate case with a single variable for two countries, one of 

them being a large economy affecting a smaller one. The assumption that one of the variables 
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does not affect the others in the long run might be more realistic in the context of a 

macroeconomic system. In such a case, an appropriate restriction is the following: 
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Combining (24) – (26) with (27) or (28) the system is now completely identified and the 

impulse response functions can easily be estimated. 

 

3.2 A (2x1) vector fractionally autoregressive model 

Here, we extend the structural model (10) to the case of weak parametric autocorrelation in ut. 

In particular, we consider the case of a VAR(1) system for ut. Thus, the structural model is 

now (10) with 
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where v1t and v2t are serially uncorrelated and mutually orthogonal with unit variance (i.e., 

 and  = 0) and with all the roots lying outside the unit circle. First, we 

describe the impulse response functions. Assuming that u
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where Cij(L), i, j = 1, 2 are polynomials of infinite order in L. From (11) and (30): 
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implying that 
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which are the impulse response functions. 

 

3.3 Identification in a VAR fractional model 

The reduced-form model is now (20) with 
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and using again any of the parametric procedures for vector fractional integration we can 

obtain estimates of d1 and d2, ξ11, ξ12, ξ21 and ξ22, along with the coefficients of the variance-

covariance matrix of wt, i.e.,   and  ,11
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implying three equations of the same form as in (21) – (23), and that 
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Thus, we add four equations with four unknowns, so the same restrictions as in the previous 

case apply here. 

 

4. A testing procedure for fractional integration in multivariate contexts 

A simple version of the procedure proposed in Gil-Alana (2003a,b) consists in testing the null 

hypothesis: 

,),...,,(),...,,(: 2121 onooono ddddddddH ≡=≡   (39) 

for any real vector do, in the model given by (20), where εt is supposed to be an I(0) vector 

process with spectral density function F(λ) that is positive definite. Therefore, εt may be white 

noise, but VAR structures can also be incorporated. To allow for some degree of generality, 

let us suppose that εt in (20) is generated by a parametric model of the form: 
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where wt is white noise and W is the unknown variance-covariance matrix of wt. The spectral 

density matrix of εt is then 
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where T* is a compact subset of q-dimensional Euclidean space. Extending the conditions 

derived by Robinson (1994) for the univariate case, Gil-Alana (2003a) shows that: 

.~ 2 ∞→→ TasS nd χ    (43) 

Thus, the limit distribution is standard, in contrast to the case of most procedures for testing, 

for instance, unit roots, in models based on AR (VAR) alternatives, where the null limit 

distribution is non-standard and critical values have to be calculated in each case using 

simulation techniques. 

 

5. An empirical application 

In this section we apply the techniques outlined above to a bivariate system including real 

GDP in the US and, in turn, in one of four Scandinavian countries, i.e. Denmark, Finland, 

Norway and Sweden.  The series are annual, for the period 1870-2000, and are taken from the 

Eurostat website: http:\www.fgn.unisg.ch/eumacro/macrodata/dmtrxneu.htm as well as 
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Maddison (1995), and have been demeaned prior to estimation to eliminate possible 

deterministic trends. Note that the choice of one large economy (i.e. the US) and four smaller 

ones is made to be consistent with the restrictions to be imposed on the model, as a shock to 

US real output is likely to affect the European countries, including the Scandinavian ones, 

whilst the opposite should not hold.  

First, we apply the procedure described in Section 4, assuming that the disturbances 

are white noise. Denoting the US real output series by y1t, and each of the Scandinavian 

countries in  turn by y2t, we test Ho: (d1, d2)’ = (d1o, d2o)’ in the model given by equation (20) 

for (d1o, d2o)-values ranging from 0 to 2, with 0.01 increments. Table 1 displays the values of 

d1 and d2 for which the null hypothesis cannot be rejected at the 95% level. These values are 

very similar for the four countries: for the US, the order of integration ranges from 0.57 to 

0.62, and it is slightly higher for the Scandinavian countries, being between 0.63 and 0.67. 

Table 2 reports the values of d1 and d2 producing the lowest statistic for each country, along 

with the values corresponding to the associated variance-covariance matrix of the differenced 

processes. It can be seen that d1 (the US order of integration) is 0.60 when the model includes 

Danish or Finnish real output, and it is slightly smaller (0.58) in the two other systems 

including Swedish or Norwegian output. On the other hand, the orders of integration for the 

Scandinavian countries are 0.66 and 0.63 in the case of Denmark and Norway, and Finland 

and Sweden respectively. Note that these values should be an approximation to the maximum 

likelihood estimates, as our procedure uses the Whittle function, which is an approximation to 

the likelihood function.  

[Insert Tables 1 and 2 about here] 

Next, we allow for autocorrelation in εt and assume that it follows a VAR(1) process 

as in (38). A larger percentage of non-rejection values is then obtained. The lowest statistics 

for the values of d1 and d2 are displayed in Table 3. It can be seen that now d1 is strictly above 
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1 in all four cases, with values ranging from 1.08 to 1.31. On the other hand, the values for the 

Scandinavian countries are all below 1, ranging from 0.64 (Denmark) to 0.97 (Sweden). 

According to this specification, real output is nonstationary in all cases, though mean- 

reverting in case of the European countries. Table 4 presents the coefficients of the variance- 

covariance matrices of the differenced processes and the residuals, both being required for the 

computation of the impulse response functions. 

[Insert Tables 3 and 4 about here] 

These are shown in Figures 1 – 4 for the case of white noise disturbances. The 

observed pattern is very similar in all four countries, namely shocks to real output are mean-

reverting in all cases. However, the process of convergence is slower in the US (top-left 

panels in Figures 1 – 4) compared with the Scandinavian countries (bottom-right panels). This 

result may appear surprising at first, especially when noting that in Table 2 the order of 

integration in the US (d1) is smaller than the corresponding one for the Scandinavian  

countries (d2). The reason for the higher persistence in the US case is the interaction between 

the coefficients of the variance-covariance matrix of the disturbance term and those of the 

structural-form model given by (10). By construction, shocks to the Scandinavian countries 

do not affect the US economy (top-right panels), while a 1-unit positive shock to US real 

output produces a positive effect  on the Scandinavian countries, though this disappears in the 

long run (bottom-left panels). 

 The results obtained when the disturbances are modelled as VAR(1) processes (not 

reported here for reasons of space) differ in one important respect, i.e. shocks to US output are 

found not to be mean-reverting,  unlike in the Scandinavian countries, where mean reversion 

still occurs. However, the cross impulse responses are similar to those computed in the white 

noise case, with shocks producing a positive effect though disappearing in the long run. 
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6. Conclusions 

In this paper we have analysed impulse response functions in the context of vector 

fractionally integrated time series. Specifically, we have derived analytically the restrictions 

required to identify the structural-form system. Our framework improves in two ways upon 

earlier studies. First, it is much more general compared to standard impulse response analysis 

(see, e.g., Blanchard and Quah, 1989), as it allows for fractional degrees of integration. 

Second, it is of a multivariate nature, in contrast to most of the earlier literature on fractional 

integration which only focuses on the univariate case (as in Robinson, 1994, inter alia). An 

empirical application based on a bivariate system including real output in the US and in one 

of four Scandinavian countries in turn (Denmark, Finland, Norway, Sweden) is also carried 

out as an illustration of the recommended procedure. The empirical results vary depending on 

how the I(0) vector of disturbances is specified. Specifically, when this is assumed to follow a 

white-noise process, the series appear to be mean-reverting in all cases. By contrast, when 

imposing a VAR(1) structure on the differenced series, US real output is found not to exhibit 

mean-reversion any longer, while output in the Scandinavian countries still does. The cross 

impulse responses suggest that positive shocks to the US economy affect positively 

Scandinavian output, but this effect is estimated to be relatively small and tends to disappear 

in the long run. 

 The present study could be extended in several ways. For instance, impulse response 

functions could also be obtained using the Blanchard and Quah (1989) decomposition, i.e., 

imposing long-run zero restrictions, although this should not affect significantly the empirical 

findings as the estimates are  obtained from the reduced-form model, independently of the 

restrictions  imposed, and consequently the impulse responses should not be much affected. 

More interestingly, one could consider higher-order systems, examining not simply bilateral 
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country linkages for a given series but rather a full macroeconomic dynamic system. Also, 

one could allow for structural breaks. We are investigating these issues at present. 
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TABLE 1 

Values of d1 and d2 for which Ho cannot be rejected 
Country d1 d2 Test statistic 

0.57 0.67 4.473 
0.58 0.66 5.128 
0.58 0.67 2.183 
0.59 0.66 1.124 
0.59 0.67 3.025 
0.60 0.66 0.007 
0.61 0.65 4.320 
0.61 0.66 1.004 
0.62 0.65 3.577 
0.62 0.66 3.401 

 

 

 

DENMARK 

0.63 0.67 4.320 
0.57 0.64 1.823 
0.58 0.64 2.301 
0.59 0.63 1.641 
0.60 0.63 1.398 

 

FINLAND 

0.61 0.63 4.659 
0.56 0.64 2.415 
0.57 0.63 3.535 SWEDEN 
0.58 0.63 0.925 
0.57 0.66 4.118 
0.58 0.66 0.880 
0.59 0.65 4.757 
0.59 0.66 2.462 
0.60 0.65 1.629 
0.61 0.65 1.849 

 

 

NORWAY 

0.62 0.65 4.214 
In bold the values producing the lowest statistics for each series 

 

 

TABLE 2 
d-values corresponding to the lowest statistic and variance-covariance matrix 

 d1 d2 σ11 σ12 σ22

DENMARK 0.60 0.66 0.0657 0.0514 0.0480 
FINLAND 0.60 0.63 0.0657 0.0519 0.0461 
SWEDEN 0.58 0.63 0.0696 0.0450 0.0316 
NORWAY 0.58 0.66 0.0696 0.0464 0.035 
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TABLE 3 
Values of of d1 and d2 corresponding to the lowest statistic along with the VAR coefficients 

 d1 d2 α11 α12 α21 α22

DENMARK 1.31 0.64 -0.432 -0.878 0.369 1.002 
FINLAND 1.22 0.73 -0.610 -0.981 0.682 1.183 
SWEDEN 1.08 0.97 -0.799 -0.743 1.155 1.069 
NORWAY 1.17 0.77 -0.619 -0.902 0.793 1.207 

 

 

TABLE 4 
Variance-Covariance matrix coefficients 

 Differenced process Residuals 
 σ11 σ12 σ22 σ11 σ12 σ22

DENMARK 0.0462 0.0260 0.0509 0.1182 -0.0049 0.0476 
FINLAND 0.0440 0.0286 0.0358 0.1569 -0.0558 0.0847 
SWEDEN 0.0419 0.0268 0.0194 0.176 -0.113 0.145 
NORWAY 0.0430 0.0265 0.0272 0.1471 -0.0651 0.0933 
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FIGURE 1 

Impulse response functions in the case of DENMARK with white noise disturbances 
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FIGURE 2 

Impulse response functions in the case of FINLAND with white noise disturbances 
Effect of a 1-unit shock in u1t on y1t Effect of a 1-unit shock in u2t on y1t
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FIGURE 3 

Impulse response functions in the case of SWEDEN with white noise disturbances 
Effect of a 1-unit shock in u1t on y1t Effect of a 1-unit shock in u2t on y1t
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FIGURE 4 

Impulse response functions in the case of NORWAY with white noise disturbances 
Effect of a 1-unit shock in u1t on y1t Effect of a 1-unit shock in u2t on y1t
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