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Abstract 

It is widely accepted that for many buckling problems of plates and shells in the plastic 

range the flow theory of plasticity leads to a significant overestimation of the buckling stress 

while the deformation theory provides much more accurate predictions and is therefore 

generally recommended for use in practical applications. The present work aims to 

contribute to further understanding of the seeming differences between these two theories 

with particular regards to circular cylindrical shells subjected to axial compression. A 

clearer understanding of the two theories is established using accurate numerical examples 

and comparisons with some widely cited accurate physical test results. It is found that, 

contrary to common perception, by using a geometrically nonlinear finite element 

formulation with carefully determined and validated constitutive laws very good agreement 

between numerical and test results can be obtained in the case of the physically more sound 

flow theory of plasticity. The reasons underlying the apparent buckling paradox found in the 

literature regarding the application of deformation and flow theories and the different 

conclusions reached in this work are investigated and discussed in detail. 

 

Keywords: shell buckling; shell instability; plastic buckling; deformation plasticity; flow 

plasticity; plastic paradox; non-linear FEA. 

1. Introduction  

Plastic buckling of circular cylindrical shells has been the subject of active research 

for many decades due to its importance to the design of aerospace, submarine, offshore 

and civil engineering structures. It typically occurs in the case of moderately thick 



2 

 

cylinders subjected to axial compression, external pressure, torsion or combinations of 

such loads. For example, buried pipelines used to transport fluids or pipelines resting 

on a deformed foundation can undergo high compressive axial loads, which can lead to 

axial buckling, or experience high external pressure leading to ovalisation buckling. 

In general, the numerical analysis of plastic buckling of practical cylinders requires 

the determination of the nonlinear load-deflection path and must also consider 

bifurcation and mode changes. Therefore, an accurate prediction of the critical loads in 

the plastic range requires accounting for moderate large deflection and, one would 

expect, nonlinear, irreversible, path-dependent material behavior (Bushnell, 1982).  

On the other hand, path-dependence is not always invoked as a necessary hypothesis 

for modeling purposes. In fact, based on whether path-dependence is accounted for or 

not, the plasticity models that have been proposed for metals in the strain hardening 

range can be divided into two groups: the ‘deformation theory’ of plasticity and the 

‘flow theory’ of plasticity. In both of these theories the plastic deformations do not allow 

volume changes as plastic yielding is governed by the second invariant    of the 

deviatoric part of the stress tensor, whereby in this respect they are both so-called    

theories. However, the deformation theory of plasticity is based on the assumption that 

for continued loading the state of stress is uniquely determined by the state of strain 

and, therefore, it is a special class of path-independent non-linear elasticity constitutive 

laws. According to this assumption, after a strain reversal, rather than recovering the 

initial elastic stiffness, as is found in physical tests, the initial loading curve is followed. 

On the other hand, the flow theory of plasticity assumes that an (infinitesimal) 

increment of stress is uniquely determined by the existing strain and its increment. This  

leads to a path-dependent relationship in which the current stress depends not only on 

the value of the current total strain but also on how the actual strain value has been 

reached, thus making the constitutive relationship path dependent.  

There is a general agreement among engineers and researchers that the deformation 

theory of plasticity lacks  physical rigour in comparison to the flow theory. Use of the 

deformation theory predicts buckling loads that are less than corresponding loads 

obtained with the incremental theory, and evidence of comparison between measured 

and calculated buckling loads points in favour of deformation theory results. This fact 

may be related to several factors and Onat and Drucker (1953) first pointed out through 

an approximate analysis that buckling predictions based on the flow theory for long 
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plates supported on three sides tend to those predicted by the deformation theory if 

small but unavoidable imperfections are taken into account. Later, this so called “plate 

buckling paradox” was theoretically examined by Sewell (1963) who obtained lower 

flow theory buckling loads by allowing a variation in the direction of the unit normal. In 

a subsequent study Sewell (1973) also illustrated that the use of Tresca yield surface in 

the flow theory of plasticity leads to significant reductions in the buckling loads. An 

extensive discussion of the buckling paradox as understood at that time was given by 

Hutchinson (1974).  

More recently, Wang and Huang (2009) examined the elastoplastic buckling of a 

rectangular plate made of alloy Al 7075 T6, typically used in the aerospace industry, 

subjected to biaxial loading (uniform compressive load       in one direction and 

tension or compression load       in the perpendicular direction, where   is a 

constant). A detailed parametric study was made using the differential quadrature 

method (DQ) and the authors concluded that the small deformation assumption used to 

establish the governing differential equation could possibly be the reason for the large 

discrepancy between the results obtained using either deformation or flow theory. In a 

later paper, Wang and Zhang (2011) used the DQ method to obtain the elastoplastic 

buckling stresses for thick rectangular plates with various values of the thickness-to-

side-length ratio, and for various material properties and boundary conditions. They 

found that the discrepancy in the calculated buckling stresses between the two theories 

of plasticity gets larger with increasing plate thickness, the ratio      and exponent   in 

the Ramberg–Osgood expression, where   and    are the Young’s modulus and yield 

strength. They suggested that another explanation of the discrepancies in the results 

using the two theories for thick plates could be that the deformation theory predicts an 

increasingly lower in-plane shear modulus as the level of plasticity increases, which 

results in lower calculated buckling-stress values. 

Restricting attention to the plastic buckling of circular cylindrical shells, Mao and Lu 

(1999) analytically examined simply supported cylinders made of aluminium alloy 

subjected to axial compression load. They compared the buckling stresses predicted by 

their analytical formula with the experimental results conducted by Lee (1962) and 

found that the deformation theory provides closer results with the tests while the flow 

theory significantly over-predicts the critical loads. 
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Blachut et al. (1996) conducted experimental and numerical analyses of 30 mild-

steel machined cylinders, of different dimensions, subject to axial tension and 

increasing external pressure. They showed that agreement between the buckling 

stresses calculated using the two theories was strongly dependent on the ratio of the 

length   of the cylindrical shell to its outer diameter  . For short cylinders (     ) 

the plastic buckling pressure predicted by flow or deformation theory coincided only 

when the tensile axial load vanished. By increasing the axial tensile load, the plastic 

buckling pressure calculated using by the flow theory of plasticity quickly diverged from 

corresponding values calculated using the deformation theory, which were closer to the 

experimental values. For specimens with     ranging from 1.5 to 2 the results 

predicted by both theories were very similar for a certain range of combined loading, 

beyond which the values calculated using the flow theory began to deviate from the 

corresponding results using the deformation theory and became unrealistic in 

correspondence of large plastic strains. 

Durban and Ore (1992) analytically investigated the buckling of axially compressed 

circular cylindrical shells in the plastic range for various boundary conditions. Similar to 

Mao and Lu (1999), they concluded that the buckling compression stresses predicted by 

the deformation theory appeared to be in good agreement with measured test results, 

while those provided by the flow theory overestimated the measured test values. 

Moreover, the authors observed that the differences between the theoretical results 

predicted by the flow and deformation theory reduced with increasing value of the 

strain hardening parameter. 

Bardi and Kyriakides (2006) tested fifteen cylindrical stainless steel tubes, with   ⁄  

ranging between 23 and 52, under axial compression and determined the critical 

stresses and strains at the onset of wrinkling.  They reported the buckling modes, 

including the number and the size of waves. They also calculated the same quantities 

analytically using the deformation or the flow plasticity theory. The calculations 

included the effects of assuming both isotropic and anisotropic material behaviour. 

Bardi and Kyriakides concluded that the flow theory significantly over-predicts the 

critical stresses and strains while the deformation theory leads to critical stress and 

strain in better agreement with the experimental results. Moreover, the flow theory 

grossly over-predicted the wavelength of wrinkles while the deformation theory was in 

better agreement with the wavelengths measured in the tests. 
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The plastic paradox does not seem to be limited to the buckling of plates and 

cylinders. For example, Galletly el al. (1990) investigated the plastic buckling of six 

machined steel torispherical domes of different geometries and subjected to internal 

pressure. The tests were carried out to highlight the differences in buckling stresses 

calculated, using the code BOSOR 5 (Bushnell, 1986), with either the flow or the 

deformation theory.  They measured low-amplitude waves in the knuckle of the 

torispherical domes by probes allocated at the knuckle region for all six specimens. 

These waves grew with the increasing internal pressure in four test specimens and 

became visible to the naked eye while in other two specimens the waves could not be 

visually detected but could be felt by finger-tip contact. In their analysis they found that, 

for all the tests, the buckling mode failure and the internal pressure predicted by the 

deformation theory was in good agreement with the experimental results, the 

difference varying between 6% and 29%. On the other hand, the flow theory did not 

predict a buckling failure mode for any of the four test specimens. 

In the framework provided by the above cited publications, the present work aims to 

shed light on the plastic buckling paradox by conducting accurate linear and nonlinear 

finite-element modelling of buckling of cylindrical shells using the flow theory and the 

deformation theory of plasticity.  

Attention is focused on cylindrical shells subject to axial compression with outer-

radius-to-thickness ratio   ⁄  ranging between 9 and 120, because of the great 

significance of this geometry and loading conditions for engineering application. The 

predictions have been compared with widely recognised experimental results reported 

in the literature by Lee (1962) and Batterman (1965) and with the analytical results 

reported by Mao and Lu (1999) and Durban and Ore (1992). 

It is found that, in contrast to common understanding, by using carefully validated 

geometrically nonlinear finite element (FE) modelling a very good agreement between 

numerical and experimental results can be obtained in the case of the physically sound 

flow theory of plasticity. The reasons underlying the apparent buckling paradox are 

then investigated and discussed in detail. 
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2. Test samples and finite-element modelling 

2.1   Geometry and elements 

The plastic buckling of perfect and imperfect cylinders subjected to axial 

compression has been numerically simulated using non-linear FE analyses using both 

the flow and the deformation theory of plasticity, adopting the FE code ABAQUS, version 

6.11-1.  Specific attention has been paid to adopt model parameters which, in the case of 

proportional monotonic (increasing) loading, result in the same stress-strain curve in 

both theories, to within a negligible numerical error. The FE simulations were 

conducted for aluminium cylinders tested by Lee (1962) and Batterman (1965). Out of 

the ten cylinders tested by Lee and of the thirty cylinders tested by Batterman, eight and 

nine of them, respectively, were chosen for the numerical investigation. The criterion 

used for the selection of these tests was to account for a wide range of R/t. The results of 

the analysis are compared with the corresponding test results reported by the above 

authors and with analytical results derived by Durban and Ore (1992) and Mao and Lu 

(1999).  

In Lee’s experiments, the specimens were made of cylinders of aluminium alloy 

3003-0, which were reported to be free of residual stresses. The compression pad used 

to transfer the axial force and the base block had annular recesses in which the 

specimens were inserted. Lee tested 10 cylinders with an outer diameter of 101.6 mm 

and radius-thickness ratios     varying between 9.36 and 46.06. He pointed out that 

the imperfections in general were irregular such that the cross sections had somewhat 

oval shapes. Eight cylindrical shells were chosen for the present numerical analysis, as 

illustrated in Table 2.1. 

The end sections during the test were neither perfectly hinged nor perfectly 

clamped. Therefore, the two idealised boundary conditions, hinged and clamped, were 

modelled separately. For the case of clamped ends, the bottom edge of the shell was 

considered as fully fixed, i.e. with no allowed translations and rotations for all degrees 

of freedom; the other edge was also considered fully restrained, except for the 

displacement in the axial direction which was prescribed to increase monotonically 

downward. In the case of hinged ends, the rotations normal to the cylinder wall were 

fully allowed.  
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The cylindrical specimens were modelled using a general purpose 4-noded shell 

element which has six degrees of freedom at each node.  This element is named “S4” in 

the commercial software ABAQUS and is based on a thick shell theory. The shell 

formulation accounts for finite membrane strains, therefore this element can be used to 

perform large strain analyses. The element is widely used for industrial applications 

because it is suitable for both thin and thick shells.  The S4 element uses a normal 

integration rule with four integration points. The enhanced-strains approach is 

employed to prevent shear and membrane locking. Among the ABAQUS elements, S4 

outperforms S4R as the former evaluates more accurately the membrane strains, which 

plays a key role in the problem at hand (Simulia, 2011). 

 

Spec. R (mm) R/t L/R t (mm) L (mm) 
Imperfection 

ratio δ/t 

A330 50.8 9.36 4.21 5.43 213.87 0.012 

A230 50.8 9.38 6.32 5.42 321.01 0.012 

A130 50.8 9.39 10.5 5.41 533.40 0.012 

A320 50.8 19.38 4.1 2.62 208.28 0.03 

A220 50.8 19.4 6.15 2.62 321.10 0.05 

A310 50.8 29.16 4.06 1.74 206.25 0.045 

A110 50.8 29.22 10.16 1.74 516.13 0.033 

A300 50.8 46.06 4.04 1.1 205.23 0.105 

Table 2.1: Geometry and imperfection ratio of the aluminium cylinders tested by Lee (1962).  

A structured mesh was used, made from a number of divisions along the 

circumference and longitudinal direction reported in Table 2.2 for each specimen. 

 

 Specimens 

Number of elements A330 A230 A130 A320 A220 A310 A110 A300 

- around the 
circumference 

150 150 150 150 150 150 150 150 

- along the length 100 150 250 98 150 97 242 96 

 Table 2.2: FE mesh discretisation adopted for the FE analyses of the cylinders tested by Lee. 

In the tests carried out and reported by Batterman (1965), the specimens were 

made of cylinders of aluminium alloy 2024-T4. The ends of the specimens were 

restrained such as to be considered clamped. Batterman tested 30 cylinders with 
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radius-thickness ratio     varying between 9.7 and 121.25. Nine cylindrical shells were 

chosen for the present numerical analysis, as presented in Table 2.3. 

Spec. R (mm) R/t L/R t (mm) L (mm) 

12 34.79 9.7 2.92 3.586 101.6 

18 34.8 9.76 2.92 3.566 101.6 

22 35.56 13.93 0.72 2.553 25.4 

5 33.42 25.94 0.76 1.297 25.4 

15 34.72 44.69 1.47 0.777 50.8 

16 34.59 56.52 0.73 0.612 25.4 

26 34.49 85.95 0.74 0.4013 25.4 

8 33.2 114.56 1.53 0.29 50.8 

9 33.12 116.61 0.77 0.284 25.4 

Table 2.3: Geometries of aluminium cylinders tested by Batterman (1965). 

Again 4-noded shell (S4) elements were used in the FE modelling with a structured 

mesh with numbers of elements along circumference and length shown in Table 2.4 for 

each specimen. 

 

 Specimens 

Number of elements 12 18 22 5 15 16 26 8 9 

- around the 
circumference 

150 150 250 250 150 250 250 250 250 

- along the length 70 70 28 30 35 29 29 61 31 

 Table 2.4: FE mesh discretisation adopted for the analyses of the cylinders tested by Batterman. 

2.2 Constitutive relationship and material constants 

The uniaxial stress-strain relationship of the material under monotonic loading was 

characterised by the Ramberg-Osgood relationship: 

      (
 

  
)
   

    (2.1) 

where   and   denotes uniaxial strain and stress,   and   are Young’s modulus and 

Poisson’s ratio, respectively,    is the nominal yield strength, sometimes called ‘proof 

stress’ and denoted by       (see Figure 2.1),    is the ‘yield offset’ and   is the strain 

hardening parameter. 
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The Ramberg-Osgood input parameters used in the numerical simulations are 

reported in Table 2.5.  

   [GPa]   [MPa]       

Lee’s tests 70 23.62 0.32 4.1 0.4286 

Batterman’s tests 74.463 389.554 0.32 14.45 0.3823 

Table 2.5: Ramberg-Osgood constants used in the numerical analyses. 

For the cylinders tested by Lee (1962), the parameters used for the FE modelling are 

those reported by Lee’s paper. For Batterman’s tests two sets of experimental data from 

tensile and compression tests were reported by the author and fitted with the Ramberg-

Osgood relationship. In particular, two values of the yield strength,       and      , 

corresponding to strains of 0.2% and 0.5%, respectively, measured in tensile and 

compression tests were reported by Batterman (1965) and were used to calculate the 

values of   and   reported in Table 2.6. In particular, since         , from Equation 

(2.1) one has: 

        
 

  
 (2.2) 

and   is obtained from  the relationship: 

  

  (
       
    

)

  (
     
  

)
 (2.3) 
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Figure 2.1: Illustration of       and        on the stress-strain curve. 

 

Data from Compression tests Tension tests 

  [GPa] 74.463 73.57 

      [MPa] 389.55 408.86 

      [MPa] 415.06 419.2 

  0.3823 0.3599 

  14.45 36.68 

Table 2.6: Material constants from tensile and compression tests (Batterman, 1965). 

Figure 2.2 shows a comparison between the experimental uniaxial stress-strain 

curves reported by Batterman and those obtained using the Ramberg-Osgood 

relationship with the parameters in Table 2.6. It can be seen that the Ramberg-Osgood 

constants calculated using the compression tests lead to a very good agreement with the 

experimental compression data, such that they have been used for the numerical 

analyses. 

 

 

 

Figure 2.2: Comparison between experimental and formula curves 
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The deformation theory of plasticity used in the numerical simulations is obtained 

by extending the Ramberg-Osgood law to the case of a multi-axial stress state using the 

von Mises formulation (   theory) and results in the following path-independent 

relationship (Simulia, 2011). The resulting equations are reported in Appendix A1.  

The flow theory used in the numerical simulations was the classical    flow theory of 

plasticity, with nonlinear isotropic hardening and in the small-strain regime (Simo and 

Hughes, 1998; Simulia, 2011). Such theory is implemented in a model available in 

ABAQUS. For the sake of completeness the equations governing the theory are reported 

in Appendix A2.  On the other hand, it is important to underline here that the input data 

for the flow theory were obtained in such a way that the same stress-strain curve as in 

the case of the deformation theory is obtained for the case of uniaxial stress and 

monotonic loading, to within a negligibly small numerical tolerance.  

It is worth recalling that the Ramberg-Osgood relationship does not account for any 

initial linearly elastic behaviour but represents a nonlinear material response for any 

value of the stress, even if for relatively small stress values the deviation from linearity 

is quite small. Hence, the function  ̅ in Equation (A.4) should be such that  ̅( )   , i.e. 

the initial yield stress in the flow theory should be taken as zero. However, the 

numerical implementation of the J2 flow theory requires the use of the well-known 

radial-return algorithm (see (Simo and Hughes, 1998) among many others) which, in 

turn, requires the calculation of the unit normal vector to the yield surface. The unit 

normal vector is undefined if the yield surface degenerates to a point, which is why, 

using the J2 flow theory implemented in ABAQUS, a zero value of  ̅( ) leads to lack of 

convergence in the first increment. Hence, the value  ̅( )       MPa was assumed. 

Furthermore, a tabulated approximation of  ̅(  
  ) was obtained by considering  ̅  

increments of 2 MPa; for each value of the stress  ̅ the corresponding equivalent plastic 

strain value   
  

 was obtained from Equation (2.1) as follows         

  
  
  (

 ̅

  
)
   

 ̅

 
   (2.4) 

Figure 2.3 illustrates the load-displacement curves obtained for the numerical 

tensile test of a square rod of 10 10 mm2 subject to homogeneous uniaxial stress using 

both plasticity theories in conjunction with the material parameters used for the 

simulation of Lee’s tests. It can be appreciated that the load-deflection curves are 
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identical during the loading process. Upon unloading, in the case of the deformation 

theory the same loading curve is followed, whereas in the case of the flow theory, the 

unloading is elastic.  In the case of the flow theory, in order to restore the value of 

deflection to zero, a compressive load is applied and the load-deflection path proceeds 

as shown in Figure 2.3. The same procedure has been followed for the material models 

used to simulate Batterman’s tests, which led to a perfectly analogous graph as in Figure 

2.3.  

 

 

Figure 2.3: Load-displacement relation for a 10×10 mm2 square rod of aluminium alloy 3003-0 subjected to 

homogeneous uniaxial stress. 

It is worth remarking that the nonlinear isotropic model used for the flow theory of 

plasticity obviously does not account for the Baushinger effect, but plastic strain 

reversal always occurred in the simulations considered here after the maximum 

(buckling) load had been reached, so that ignoring the Baushinger effect does not affect 

the buckling problems under analysis. 

2.3 Large displacement formulation 

The above constitutive relationships are extended to the large-strain regime by 

using spatial co-rotational stress and strain measures and a hypo-elastic relation 

between the rates of stress and elastic strain (Simulia, 2011). This has been the subject 

of controversial debate because hypo-elastic laws lead to fictitious numerical 
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dissipation (Simo and Hughes, 1998). However, this large-strain formulation is widely 

implemented in many commercial codes, including ABAQUS, and it is generally accepted 

that the hypo-elasticity of the formulation has limited influence on the results because, 

even when strains are large, the elastic part of the strain is typically still very small and 

therefore close to the limit where hypo-elastic and hyper-elastic formulations coincide 

(Simo and Hughes, 1998). 

2.4 Solution strategy 

The nonlinear analysis was conducted using the modified Riks’ approach (Riks, 

1979) to trace the nonlinear response. Riks’ method was the first of the so-called “arc-

length” techniques, which provide an incremental approach to the solution of problems 

involving limit points in the equilibrium path. In this technique, both the vector of 

displacement increments    and the increment    of the scalar multiplier of the applied 

loads or displacements are unknown variables in the incremental/iteration scheme. The 

Riks’ formulation iterates along a hyper plane orthogonal to the tangent of the arc-

length from a previously converged point on the equilibrium path (Falzon, 2006). The 

iterations within each increment are performed using the Newton–Raphson method; 

therefore, at any time there will be a finite radius of convergence (Simulia, 2011).  

In this analysis, the displacement at the top edge of the cylinder is prescribed to be 

equal to     , where    denotes a reference downward vertical displacement and   is 

the scalar multiplier . The analysis accounts for geometrical non-linearity as discussed 

in Sections 2.1 and 2.3. The critical load is determined by the point at which the load-

shortening curve reaches a maximum. 

The machine compliance was not included in the analyses reported because it does 

not affect the computed buckling stresses and only results in a right-ward shift of the 

load-shortening curves. This was confirmed by additional analyses, not reported here, 

in which the compliance was introduced with suitably inserted springs at the top edge. 

2.5 Imperfection sensitivity analysis 

In order to study the imperfection sensitivity of the cylinders, in the case of Lee’s 

tests the analysis was carried out both for perfect cylinders and for two reference 

values of maximum imperfection amplitude, equal to 10% and 20% of the thickness. 
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Moreover, the analysis was also conducted for the imperfection amplitudes presented in 

Table 2.1, experimentally measured by Lee (1962). 

In the case of Batterman’s tests, the analysis was carried out both for perfect 

cylinders and for two reference values of imperfection amplitude, i.e. 5% and 10% of 

the thickness.  

In both cases, imperfections were modelled by scaling the first linear buckling 

eigenmode and adding it to the perfect cylinder (see Figures 2.4 and 2.5). The linear 

buckling analysis has been conducted assuming linear elastic material behaviour and 

small displacements. 

                                                          

First Eigenmode for A220 cylinder                                                   First Eigenmode for A300 cylinder 

Figure 2.4: Buckling eigenmodes used in the simulation of Lee’s tests to account for imperfections. 

 

                           

First Eigenmode for sp.22 cylinder                                                       First Eigenmode for sp.16cylider 

Figure 2.5: Buckling eigenmodes used in the simulation of Batterman’s tests to account for imperfections. 
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3. FEA results for Lee’s specimens 

As mentioned earlier, due to the uncertainty regarding the actual boundary 

conditions, both perfectly hinged and perfectly clamped conditions were considered at 

the ends of the specimens. With hinged boundary conditions applied to the perfect 

model, wrinkles developed in an axisymmetric fashion as shown in the Figure 3.2. 

However, for clamped edges Figures 3.1 - 3.3 show that the deformed shapes of model 

appear to correspond well with the test results. Moreover, Table 3.1 shows that, for flow 

and deformation theory, the clamped boundary conditions resulted in a closer 

agreement between numerically calculated and experimentally measured plastic 

buckling stresses than in the case of hinged boundary conditions. This suggests that the 

actual test arrangement by Lee should be considered to prevent radial displacements 

and rotations at both ends of the specimens 

 

Figure 3.1: Buckling mode failure predicted experimentally (Lee, 1962) (reprinted by kind permission of the 

American Institute of Aeronautics and Astronautics, Inc). 

 

 

Figure 3.2: Axisymmetric deformation of axial compression shells with hinged boundary conditions and without 

initial imperfection 
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Figure 3.3: Axisymmetric deformation of axial compression shells with clamped boundary conditions and 

without initial imperfection. 

Figures 3.4 and 3.5 show that the buckling stresses calculated using flow and 

deformation theory in the simulation of Lee’s tests have a low sensitivity to the 

imperfection amplitude for moderately thick shells. However, both theories show an 

increase in the imperfection sensitivity with increasing   ⁄  ratios.    

Table 3.2 shows that the results calculated using the flow theory are in better 

agreement with the measured test results than those using the deformation theory. In 

fact, the buckling stresses calculated using the deformation theory tend to fall below the 

experimental values for all specimens except A310. In the case of the flow theory, on the 

contrary, numerical and experimental values generally are within a 3% discrepancy, 

with no clear pattern. The only cases in which the buckling stresses are under-estimated 

by the flow theory are for specimens A110 and A300, and in such cases the difference 

with the experiments were 2% and 9% respectively, generally well below the 9% and 

21% differences which occurred for the same cases when the deformation theory was 

used.  

Figures 3.6-3.7 show the load-displacement curves resulting from flow and 

deformation plasticity for specimens A230 and A300, respectively. It can be seen that 

the curve predicted by flow theory is always above the curve predicted by deformation 

theory for all cases. The load-displacement curves obtained for all other specimens are 

very similar to those in Figures 3.6 and 3.7 and therefore have not been reported.
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Table 3.1: Results obtained with hinged and clamped boundary conditions for both deformation and flow theory of plasticity, in comparison with the corresponding 
test results by Lee (1962). 

 

Buckling 

Stress (Mpa)

Buckling 

Stress (Mpa)

Buckling 

Stress (Mpa)

Buckling 

Stress (Mpa)

A330 96.87 81.64 1.19 75.52 1.28 98.58 0.98 88.82 1.09

A230 97.22 81.40 1.19 75.43 1.29 97.84 0.99 88.74 1.10

A130 94.6 81.3491 1.16 75.47 1.25 97.83 0.97 88.89 1.06

A320 78.6 62.30 1.26 59.94 1.31 80.48 0.98 74.10 1.06

A220 81.15 62.30 1.30 60.27 1.35 80.85 1.00 73.90 1.10

A310 64.74 54.79 1.18 53.31 1.21 72.47 0.89 66.84 0.97

A110 74.12 54.81 1.35 53.16 1.39 72.94 1.02 66.84 1.11

A300 69.71 47.64 1.46 47.11 1.48 64.25 1.08 59.16 1.18

Numerical Analysis  (ABAQUS)-clamped edges

Flow Plasticity Deformation PlasticityFlow Plasticity Deformation Plasticity

Numerical Analysis  (ABAQUS)-simply supported edges

Spec.

Experimental 

Buckling Stress 

(Lee , 1962)
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* AX-Axisymmetric buckling wave      * AS- Almost axisymmetric buckling wave       * DM-Diamond shaped buckling wave  * LW- number of longitudinal waves 

Table 3.2: Compression between test and numerical results for both flow and deformation theory of plasticity (imperfections identified by Lee (1962)) 

Buckling 

Stress (Mpa)
Mode of failure

Buckling 

Stress (Mpa)
Mode of failure

A330 96.87 0.012 98.54 0.98 AX, Ring-Shaped near the edges 89.05 1.09 *AX, 4*LW

A230 97.22 0.01 97.84 0.99 AX, Ring-Shaped near the edges 88.74 1.10 AX, 6LW

A130 94.6 0.01 97.82 0.97 AS, Ring-Shaped near the edges 88.32 1.07 *AS, 6LW near the edges

A320 78.6 0.03 80.48 0.98 AX, Ring-Shaped near the edges 74.10 1.06 AX, 5LW

A220 81.15 0.05 80.84 1.00 AX, Ring-Shaped near the edges 73.90 1.10 AS, 8LW

A310 64.74 0.05 71.54 0.90 AS, Ring-Shaped near the edges 66.59 0.97 AS, 6LW

A110 74.12 0.03 72.94 1.02 AS, Ring-Shaped near the edges 66.84 1.11 AS, 6LW near the edges

A300 69.71 0.11 64.16 1.09

 Ring-Shaped near the edges and 

gentle DM pattern in the central 

region 

57.44 1.21

 Ring-Shaped near the edges 

and gentle DM pattern in the 

central region 

Spec.

Experimental 

Buckling Stress 

(Lee , 1962)

Numerical Analysis  (ABAQUS)

Flow Plasticity Deformation PlasticityImperfection 

ratio δ/t
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Figure 3.4: Effect of imperfections on the buckling load calculated using the flow theory of plasticity 

 

Figure 3.5: Effect of imperfections on the buckling load calculated using the deformation theory of plasticity 
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Figure 3.6: Axial load vs. prescribed displacement for specimen A230 for flow and deformation theories. 

 

 

Figure 3.7: Axial load vs. prescribed displacement for specimen A300 for flow and deformation theories. 

Lee’s tests were studied analytically by Durban and Ore (1992) and Mao and Lu 

(1999) under the assumption of axisymmetric buckling. The results of their calculations, 

illustrated in Table 3.3 and 3.4, show that the deformation theory results in better 

agreement with the findings by Lee (1962) and that the flow-theory predictions 

systematically over estimate the buckling stresses. This is in contrast with the results of 

the present study, which show that, if appropriately applied, the flow theory accurately 

estimates the experimental buckling stress.  
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Table 3.3: Comparison between results Mao and Lu (1999) and present numerical results for both flow 
and deformation theories of plasticity 

 

Table 3.4: Comparison between results by Durban and Ore (1992) and present numerical results for both 
flow and deformation theories of plasticity 

4. FEA results for Batterman’s experiments 

Figures 4.1 and 4.2 show that the buckling stresses calculated using the flow and 

deformation theories in the simulation of Batterman’s tests display a low sensitivity to 

the imperfection amplitude for shells with      ⁄    . However, both theories show 

an increase in the imperfection sensitivity for   ⁄  ratios above 45. In particular, the flow 

and deformation theories of plasticity both overestimate the ultimate load for shells 

with      ⁄      if imperfections in the shells are not accounted for. On the other 

hand, both theories provide good agreement with experimental results if a 5% 

imperfection is included in the analysis. 

Experimental 

Buckling Stress (Mpa)

 (Lee , 1962) Flow Deformation Flow Deformation

A330 96.87 165.46 89.71 98.58 88.82

A320 78.60 124.25 74.87 80.48 74.10

A310 64.74 106.00 67.70 72.47 66.84

Spec.

Analytical (Mao and Lu, 

1999)

Numerical Analysis  

(ABAQUS)

Flow Deformation Flow Deformation

A330 96.87 162.32 88.34 98.58 88.82

A230 97.22 162.32 88.34 97.84 88.74

A130 94.6 161.59 87.81 97.83 88.89

A320 78.6 121.74 73.26 80.48 74.10

A220 81.15 121.51 72.80 80.85 73.90

A310 64.74 107.73 66.79 72.47 66.84

A110 74.12 107.64 66.52 72.94 66.84

A300 69.71 87.26 59.25 64.25 59.16

Spec.

Experimental 

Buckling Stress (Mpa) 

(Lee , 1962)

Analytical (Ore and 

Durban, 1992)

Numerical Analysis  

(ABAQUS)
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Figure 4.1: Imperfection sensitivity of buckling stress computed using the flow theory of plasticity. 

 

Figure 4.2: Imperfection sensitivity of buckling stresses computed using the deformation theory of plasticity. 

It can be also noticed in Figures 4.1 and 4.2 that the differences between the 

calculations of buckling stresses using flow and deformation theories for perfect and 

imperfect cylinders are quite small both for thick and thin shells.  
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* AX-Axisymmetric buckling wave      * AS- Almost axisymmetric buckling wave       * DM-Diamond shaped buckling wave          * LW- number of longitudinal waves  

Table 4.1: Comparison between modes of failure numerically calculated and those experimentally observed by Batterman (1965). 

 

 

 

perfect 5% 10% perfect 5% 10%

12 480.08 AX Mode
AX, Ring-Shaped near 

the edges

AX, Ring-Shaped near the 

edges

AX, Ring-Shaped 

near the edges
AX, 3LW AX, 3LW AS, 3LW

18 482.63 AX Mode
AX, Ring-Shaped near 

the edges

AX, Ring-Shaped near the 

edges

AX, Ring-Shaped 

near the edges
AX, 3LW AX, 3LW AS, 3LW

22 439.8 AX Mode
AX, Ring-shaped at the 

central region

AX, Ring-shaped at the central 

region

AX, Ring-shaped at 

the central region

AX, Ring-shaped at 

the central region

AX, Ring-shaped at the central 

region

AX, Ring-shaped at the 

central region

5 410.72 AX Mode
AX, Ring-shaped at the 

central region

AX, Ring-shaped at the central 

region

AX, Ring-shaped at 

the central region

AX, Ring-shaped at 

the central region

AX, Ring-shaped at the central 

region

AX, Ring-shaped at the 

central region

15 382.6
AX Mode near ends, gentle 

DM pattern in central region
AX, 3LW

AX near the ends, gentle DM 

pattern in the central region

DM pattern in the 

central region
AX, 3LW

Ring-Shaped near the edges and 

DM pattern in the central region

DM pattern in the 

central region

16 354.25 DM pattern
AX, Ring-Shaped near 

the edges
DM pattern DM pattern 

AX, Ring-Shaped 

near the edges
DM pattern DM pattern 

26 301.23 DM pattern
AX, Ring-Shaped near 

the edges
DM pattern DM pattern 

AX, Ring-Shaped 

near the edges
DM pattern DM pattern 

8 227.73 DM pattern
AX, Ring-Shaped near 

the edges
DM pattern DM pattern AX, 5LW DM pattern DM pattern 

9 219.05 DM pattern
AX, Ring-Shaped near 

the edges
DM pattern DM pattern 

AX, Ring-shaped at 

the central region
DM pattern DM pattern 

Spec.

Experimental Buckling Stress 

(Batterman, 1965)

Buckling 

Stress 

(Mpa)

Mode of Failure

Mode of failure predicted Numerically (Abaqus)

Flow Plasticity Deformation Plasticity
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Table 4.2: Compression between measured test results and corresponding numerical results for both flow and deformation theories of plasticity for perfect 
cylinders  

Buckling Stress 

(Mpa)
Mode of failure

Buckling Stress 

(Mpa)
Mode of failue

12 480.08 455.632 1.05
AX, Ring-Shaped near 

the edges
444.198 1.08 AX, 3LW

18 482.63 453.912 1.06
AX, Ring-Shaped near 

the edges
447.863 1.08 AX, 3LW

22 439.8 433.111 1.02
AX, Ring-shaped at 

the central region
430.336 1.02

AX, Ring-shaped at 

the central region

5 410.72 401.427 1.02
AX, Ring-shaped at 

the central region
400.203 1.03

AX, Ring-shaped at 

the central region

15 382.6 377.503 1.01 AX, 3LW 377.429 1.01 AX, 3LW

16 354.25 368.405 0.96
AX, Ring-Shaped near 

the edges
366.162 0.97

AX, Ring-Shaped 

near the edges

26 301.23 333.042 0.90
AX, Ring-Shaped near 

the edges
332.445 0.91

AX, Ring-Shaped 

near the edges

8 227.73 308.725 0.74
AX, Ring-Shaped near 

the edges
296.1 0.78 AX, 5LW

9 219.05 311.703 0.70
AX, Ring-Shaped near 

the edges
310.609 0.71

AX, Ring-shaped at 

the central region

Spec.

Experimental Buckling 

Stress (Batterman, 

1965)

Flow Plasticity Deformation Plasticity

Numerical Analysis  (ABAQUS)
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Table 4.3: Compression between measured test results and numerical results for both flow and deformation theories of plasticity (5% imperfections) 

 

Buckling 

Stress (Mpa)
Mode of failure Buckling Stress (Mpa) Mode of failure

12 480.08 455.57 1.05
AX, Ring-Shaped near 

the edges
444.13 1.08 AX, 3LW

18 482.63 454.87 1.06
AX, Ring-Shaped near 

the edges
447.70 1.08 AX, 3LW

22 439.8 433.18 1.02
AX, Ring-shaped at the 

central region
430.38 1.02

AX, Ring-shaped at the 

central region

5 410.72 401.56 1.02
AX, Ring-shaped at the 

central region
400.36 1.03

AX, Ring-shaped at the 

central region

15 382.6 377.44 1.01

AX near the ends, 

gentle DM pattern in 

the central region

377.40 1.01

Ring-Shaped near the 

edges and DM pattern in 

the central region

16 354.25 366.92 0.97 DM pattern 366.25 0.97 DM pattern 

26 301.23 307.92 0.98 DM pattern 306.92 0.98 DM pattern 

8 227.73 220.93 1.03 DM pattern 220.84 1.03 DM pattern 

9 219.05 234.04 0.94 DM pattern 234.03 0.94 DM pattern 

Spec.

Experimental 

Buckling Stress 

(Batterman, 1965)

Flow Plasticity

Numerical Analysis  (ABAQUS)

Deformation Plasticity
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Table 4.4: Compression between measured test results and numerical results for both flow and deformation theories of plasticity (10% imperfections) 

Buckling Stress 

(Mpa)
Mode of failure

Buckling 

Stress (Mpa)
Mode of failure

12 480.08 455.385 1.05
AX, Ring-Shaped near 

the edges
443.92 1.08 AS, 3LW

18 482.63 454.604 1.06
AX, Ring-Shaped near 

the edges
447.40 1.08 AS, 3LW

22 439.8 433.366 1.01
AX, Ring-shaped at the 

central region
430.51 1.02

AX, Ring-shaped at the 

central region

5 410.72 402.334 1.02
AX, Ring-shaped at the 

central region
400.83 1.02

AX, Ring-shaped at the 

central region

15 382.6 359.507 1.06
DM pattern in the 

central region
352.59 1.09

DM pattern in the 

central region

16 354.25 334.873 1.06 DM pattern 333.85 1.06 DM pattern 

26 301.23 266.18 1.13 DM pattern 266.02 1.13 DM pattern 

8 227.73 176.401 1.29 DM pattern 179.52 1.27 DM pattern 

9 219.05 192.924 1.14 DM pattern 192.83 1.14 DM pattern 

Spec.

Experimental 

Buckling Stress 

(Batterman, 1965)

Flow Plasticity

Numerical Analysis  (ABAQUS)

Deformation Plasticity

                          



27 

 

Table 4.1 shows that the presence of initial imperfections also affects the failure 

modes bringing them into closer agreement with the failure mode predicted 

experimentally. 

 

 

Figure 4.3: Axial load vs. prescribed displacement numerically predicted for specimen 16 for flow and 

deformation theory in the case of perfect geometry. 

 

 

 
Figure 4.4: Axial load vs. prescribed displacement numerically predicted for specimen 15 for flow and 

deformation theory with an amplitude of initial imperfection equal to 10% of the thickness. 

Figures 4.3-4.4 show the relation between axial loads and corresponding end 

shortening for specimens 15 and 16. The load-displacement curves obtained for all 

other specimens are very similar to those in Figures 4.3 and 4.4 and therefore have not 
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been reported. Again, it can be observed that for the various geometries and 

imperfections considered the curves predicted by the flow theory are always above 

those provided by the deformation theory. 

5. Discussion and interpretation of FEA results in the context of the plastic 

buckling paradox  

The main findings from the numerical results presented in Sections 3 and 4 are that: 

(i) when correctly and accurately incorporated in accurate FE modelling, the 

deformation and flow theories of plasticity provide results which in general, and in 

particular in terms of buckling stresses, are similar and only occasionally differ 

more than 10%;  

(ii) the flow theory of plasticity consistently provides results which are in closer 

agreement with the experimental data; 

(iii) following the first part of the load-displacement curve in which the two 

theories essentially provide the same results, with increasing applied displacements 

the loads calculated using the flow theory becomes systematically larger than those 

obtained using by the deformation theory for all cases analysed. 

The first two findings are in clear contrast with the conclusions of many authors, as 

discussed in Section 1. In particular, Tables 3.3 and 3.4 show very large discrepancies 

between the buckling stresses calculated using the present numerical simulations and 

those calculated analytically by Durban and Ore (1992) and Mao and Lu (1999)  

The following sections present a comprehensive discussion on the possible causes 

for such discrepancy.  

First a mesh-convergence analysis and the effects of the initial imperfections are 

examined and it is concluded that both have negligible effect on the findings. Second,  it 

is shown that the analytical approaches provide, by their own nature, solutions that are 

kinematically over constrained and that, for this reason, lead to an over stiffened model 

both in the case of the flow and deformation theories of plasticity. Third, the influence of 

using the flow or the deformation theory of plasticity from the material standpoint is 

analysed with the help of a simplified model in the fashion of that proposed by 

Hutchinson (1972). This elementary model highlights in a very direct manner the 

influence of the different unloading paths on the results provided by the deformation 
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and the flow theories of plasticity and it clearly shows that the first underestimates 

buckling loads in comparison to the second.  

It is thus concluded that using the deformation theory of plasticity in conjunction 

with a restrained kinematics, as it is the case of the analytical models, produces a 

compensation of two errors of different sign which, in the end, generally happens to 

yield results quite in line with the experimental findings. 

5.1 Robustness of the FE model 

A mesh-convergence analysis performed showed negligible changes in results by 

employing either coarser or and more refined meshes than those used to produce the 

presented results; additionally, a sensitivity analysis revealed that the results are not 

affected by the small numerical difference in the monotonic uniaxial stress-strain curve 

between the flow and the deformation theory of plasticity on account of setting 

 ̅( )       MPa instead of  ̅( )    (see Section 2.1.2). Hence, it is concluded that 

there seems to be no particular issue with the accuracy of the FE modelling used here. 

5.2 Influence of initial imperfections 

With respect to the influence of initial imperfections, some authors recently 

suggested that, at least in the case of the analysis of lined pipes under compression, the 

overestimation of the buckling stress predicted by the flow theory can be reduced by 

giving the initial imperfections a certain amplitude (Hilberink et al., 2010). However, the 

results of the sensitivity analysis to imperfections reported in Sections 3 and 4 clearly 

show that not accounting for imperfections leads to an overestimation of the buckling 

stress which is very similar for both the flow and the deformation theory. In other 

words, for both sets of tests simulated in the present analyses erroneous consideration 

of imperfections would not lead to a larger overestimation of the buckling stress when 

using the flow theory than using the deformation theory of plasticity. 

5.3 Buckling shapes and over-constraint of analytical models 

 The implicit kinematic constraint in assuming a certain buckling shape as the basis 

of analytical models seems to be the main reason for the discrepancy between the 

presented numerical results and the analytical findings which have suggested the 

existence of a plastic buckling paradox. Actually, it is on the basis of the results from 
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several analytical calculations that it is widely accepted that the flow theory leads to a 

significant overestimation of the buckling stress while the deformation theory provides  

much more accurate prediction and is therefore recommended for use in practical 

applications (see, for example, Mao and Lu (2001, 2002)). 

Actually, the buckling shapes determined by the inherent simplifications of the 

analytical treatments result in kinematic constraints which yield a stiffer structural 

response and, as a consequence, an overestimation of the buckling stress.  

Batterman (1965) derived analytical equations to define the buckling stress and 

corresponding number of half wave (m) for flow and deformation theories of plasticity. 

He assumed simply supported boundary conditions and the stress-strain relationship of 

the material was represented by the Ramberg-Osgood expression. The expressions of 

the buckling stresses obtained in the case of the flow and deformation theories are 

reported in Appendix A. They were derived from an axisymmetric buckling shape in the 

form 

 sin /nv A m x L  (5-1) 

        Table 5.1 shows the maximum buckling stress for each specimen of Lee’s 

cylindrical shells and its corresponding number of half waves m. It can be seen that the 

corresponding number of half waves predicted by flow theory of plasticity is very 

different from that predicted by the deformation theory of plasticity and therefore the 

maximum buckling stress predicted also differs sensibly. Further validation of these 

results is given by the fact that the maximum buckling stresses are almost equal to 

buckling stresses calculated by Durban and Ore (1992) (Table 3.4). 

 

Spec. 

Experimental 

buckling stress 

(MPa) 

Analytical predictions 

  (Flow)   (Flow)   (Def.)   (Def.) 

A330 96.87 3 165.6 7 89.85 

A320 78.6 5 124.2 11 74.63 

A220 81.15 7 125.05 17 74.63 

A310 64.74 7 105.74 13 67.23 

A110 74.12 17 105.75 33 67.23 

A300 69.71 9 88.75 17 59.78 

Table 5.1: The maximum buckling stress and corresponding number of half-waves obtained analytically 
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    Cylindrical test specimens have been modelled here using finite-element modelling 

based on a 2-node linear axisymmetric shell element (named SAX1 in ABAQUS), with a 

uniform mesh.  

     In order to reproduce the shape from the analytical solution presented in Table 5.1, 

the cylinders were partitioned into an appropriate number of parts, corresponding to 

the number of half waves yielded by the analytical solution, by using the edge partition 

tool in ABAQUS. Each part was meshed into ten elements. Linear constraint equations 

were used to ensure that radial displacement of the nodes replicated the desired 

number of half-waves. 

This is shown, for example, in Figure 5.1. 

 
Figure 5.1: Deformed and undeformed shape of the cylinder for the case of m=7 

      Table 5.2 shows the comparison between the maximum buckling stresses obtained 

analytically and numerically with and without the use of equation constraints for a 

number of specimens. 

      It is evident that imposing constraint equations on the FE model in order to 

reproduce the shape of the analytical solution makes the buckling stresses predicted by 

the flow theory of plasticity well in excess of those predicted by the deformation theory 

of plasticity. The latter coincidentally seem therefore to be in better agreement with the 

experimental results. 
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Spec. 

Experimental 

buckling 

stress (MPa) 

Analytical predictions 

Numerical (FE+ 

kinematical 

constraints) 

Numerical 

using S4 

element 

(Without 

kinematical 

constraints) 

Numerical 

using SAX1 

element 

(Without 

kinematical 

constraints) 

  

(Flow) 

  

(Flow) 

  

(Def.) 

  

(Def.) 

  

(Flow) 

   

(Def.) 

  

(Flow) 

  

(Def.) 

  

(Flow) 

  

(Def.) 

A330 96.87 3 165.6 7 89.85 151.77 101.3 98.58 88.82 92.64 85.20 

A320 78.6 5 124.2 11 74.63 121.9 83.4 80.48 74.10 74.72 69.58 

A220 81.15 7 125.05 17 74.63 136.67 84.42 80.85 73.90 74.74 69.57 

A310 64.74 7 105.74 13 67.23 106.13 75.28 72.47 66.84 66.59 62.29 

A110 74.12 17 105.75 33 67.23 121.23 76.78 72.94 66.84 66.63 62.29 

A300 69.71 9 88.75 17 59.78 94.95 66.66 64.25 59.16 58.55 55.03 

 
Table 5.2: Comparison between the buckling stress obtained analytically and numerically with and 
without the use of equation constraints 

 

On the other hand, without any constraints on the displacements the results from 

using the flow theory of plasticity in the S4 elements are, as pointed out in the previous 

sections, in much better agreement with the experimental results than those by use of 

the deformation theory. Using SAX1 axisymmetric elements without kinematic 

constraints confirms this fact, but in such a case the results from deformation theory 

tend to underestimate the buckling stresses even more than in the case of the S4 

elements. 

Overall, it can be concluded that the use of the deformation theory tends to 

underestimate the buckling load and this fact, in the case of the analytical solution 

proposed by Batterman, compensates the over stiffened kinematics from the simplified 

analytical equations. 

In the next section it is shown that the underestimation of the buckling stress 

produced by the deformation theory of plasticity may be essentially attributed to the 

incorrect modelling of the actual unloading path. 

5.4 Effects of unloading: analysis through a semi-analytical model 

It is worth recalling that the fundamental differences between flow and deformation 

theories lie in the stress-strain responses (i) during non-proportional loading and (ii) 

during unloading.  
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Plastic buckling does indeed lead to non-proportional loading because before the 

onset of plasticity strains are elastic whereas, once the stress reaches and exceeds the 

yield strength, plastic strains gradually become predominant. Since the rate of plastic 

strain is normal to the yield domain, typically the strain path deviates significantly from 

the initial straight line followed during elastic loading. This aspect is captured in the 

same manner by the constitutive relationships used in the performed numerical FE 

analyses and in the analytical formulations.  

On the other hand, unloading is correctly represented by the use of the flow theory 

in the present numerical calculations, but it is physically misrepresented in the 

analytical investigations. In the following, by means of a simplified model and semi-

analytical calculations it is shown that, because of this, the deformation theory 

intrinsically tends to under predict the buckling load. 

In order to isolate the role played by the different stress responses resulting from 

the use of the flow or the deformation theory after strain reversal, i.e. material 

unloading, a simplified model conceptually similar to the one proposed by Hutchinson 

(1972) is considered. The model qualitatively reproduces the geometrically nonlinear 

response of a cylinder in compression and is modelled by uniaxial stress-strain 

relationships, leading by definition to proportional (material) loading.  

The model is described in in Figure 5.2: it consists of two rigid bars connected by two 

pin-ended short struts. Suffixes 1 and 2 are used to denote the lower and upper central 

struts. Each rigid bar has length equal to     and a rectangular cross section of depth   

and width  , whereby the cross section area is      . The short struts have length 2h 

and cross sectional areas equal to          . 

The structure is axisymmetrically supported and subjected to an end-load   with an 

eccentricity  . Moreover, nonlinear elastic ‘unstable’ springs are assumed to act 

orthogonally to the rigid bars. They are introduced to account for geometric nonlinearity 

effects and are characterized by a nonlinear and de-stabilizing response. The responses 

of the springs are unstable in the sense that the force transmitted is in the same 

direction as the spring deformation rather than opposite to it, i.e. tensile for spring 

elongation and compressive for spring shortening, in accordance with the following 

formula 

             ( )   (5.2) 
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where   is the force,    is the lateral displacement (spring elongation) and   is the 

material constant of the spring.  

 

Figure 5.2: A simplified model after Hutchinson (1972) 

Essentially, the presence of these nonlinear and unstable springs qualitatively 

reproduces the unstable post-buckling responses due to the peculiar geometrically 

nonlinear nature of structures, such cylinders in compression, via the introduction of 

material nonlinearity and unstable structural components. Geometrical nonlinearity is 

translated into material nonlinearity, which enables a study of the pre- and post-

buckling response of the structure with a simple second-order approach, resulting in 

relatively easy analytical computations.  

The stresses and strains in the struts are taken as positive when compressive. 

Denoting the strain in the struts by    and   , the rotation of the left hand bar is  given by 

   
 (     )

 
 (5.3) 

From Figure 5.2, the lateral displacement   is: 

  (   )   (   )
 (     )

 
 (5.4) 

The stress-strain relation is in the form of a bilinear elastic-plastic behavior with 

isotropic hardening which can be expressed as 

{
           
           

 (5.5) 
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where    and   ,      , are material constants that depend on the (linear) branch of the 

stress-strain curve and on whether the deformation or the flow theory of plasticity is 

used, as shown in Figure 5.3. 

 

Figure 5.3: Bilinear stress-strain curves used for the flow and deformation theory. 

Equilibrium requires that 

           (5.6) 

where 

{
          

 

 
     

 

 
      

          
 

 
     

 

 
      

   (5.7) 

Equilibrium about any point along the line of action of   yields 

  (      ⁄ )    (      ⁄ )  (   )           (5.8) 

And from Equation (5.4), one has 

        
 

   

 

 
   (5.9) 

By defining  

            and    (     )   (5.10) 

and solving for   leads to: 

  
     

       
       

         
        

        
        

 

 (  (    (   ))   (   (   )))
   (5.11) 



36 

 

The horizontal deflection of the point where the load P is applied can be calculated: 

   
(     ) 

 
         (      )  (5.12) 

In order to determine the relation between stress   and the deflection   or the 

longitudinal displacement   the following procedure is used. 

The value of deflection Δ is incrementally increased and σ and   and are calculated 

from Equations (5.9)-(5.11). The strains       , stresses        and the horizontal 

deflection   are then evaluated. At each increment, the loading stage of each strut on the 

stresses-strain curve (Figure 5.3) is determined based on its stresses       . The 

coefficients                  are then calculated according to the current loading stage and 

to the plasticity theory adopted in accordance with Tables 5.3 and 5.4. 

 

         Loading stage       Strut 1 Strut 2 

1 Both struts are elastic 
     

     

     

     

2 Strut 2 plastic, strut1 elastic 
     

     

     (   ) 

      

3 Both struts plastic 
     (   ) 

      

     (   ) 

      

4 
Strut 1 elastic unloading, 

Strut 2 plastic loading 

            

     

     (   ) 

      

5 
Strut 1 plastic reloading, 

Strut 2 plastic loading 

      (    )        

      

     (   ) 

      

Table 5.3: loading stages in the case of flow plasticity. 

The procedure was implemented in a FORTRAN code and analyses were conducted 

assuming                         . The cross section of the rigid bar was 

assumed to be square. The material properties for the struts were assumed to 

be         MPa,           MPa and       . The nonlinear spring constant was 

assumed equal to      Nmm-3 and two values of load eccentricity considered in the 

calculations were,                 . The results are reported in Figures 5.4-5.7. 

It is evident from the     and     plots that both theories of plasticity provide 

the same results up to the onset of stage 3 (i.e. start of unloading in one strut). From 
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that point on the deformation theory of plasticity underestimates the carried load by up 

to 20% with respect to the corresponding load calculated using the flow theory, 

depending on the value of the assumed imperfection. 

This fact provides a direct and physical explanation to the findings from analytical 

and FE analyses and supports the hypothesis that adopting the deformation theory of 

plasticity is likely to counterbalance the excessive structural stiffness resulting from 

assumed buckling modes, thus providing results that are seem only coincidentally to be 

more in line with the experimental findings. 

 

 Loading stage Strut 1 Strut 2 

1 Both struts are elastic 
     

     

     

     

2   Strut 2 plastic, strut1 elastic 
     

     

     (   ) 

      

3     Both struts plastic 
     (   ) 

      

     (   ) 

      

4 
Strut 1 plastic unloading, strut 2  

       plastic loading 

             

      

     (   ) 

      

5 
Strut 1 elastic unloading, strut 2  

         plastic loading 

     

     

     (   ) 

      

6 
Strut 1 plastic reloading, strut 2 

         plastic loading 

     (   ) 

      

     (   ) 

      

Table 5.4: loading stages in the case of deformation plasticity. 
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Figure 5.4:     plot from the simplified model: comparison between flow and deformation theory, 

      mm. 

 
Figure 5.5:     plot from the simplified model: comparison between flow and deformation theory,       

mm. 
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Figure 5.6:     plot from the simplified model: comparison between flow and deformation theory,     
mm. 

 

Figure 5.7:     plot from the simplified model: comparison between flow and deformation theory,     mm. 

6. Conclusions 

The discrepancy between the presented results and those in the literature by many 

other authors can be summarised by stating that, according to the performed numerical 

investigations in the cases under consideration here there is actually no plastic buckling 

paradox. In fact, the flow theory of plasticity, which provides a physically sound 
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description of the behaviour of metals, leads to predictions of the buckling stress which 

are in better agreement with the corresponding test results than those provided by use 

of the deformation theory.  

This is in contrast to the conclusions by other authors and with the widely accepted 

belief that the flow theory leads to a significant overestimation of the buckling stress 

while the deformation theory leads to much more accurate predictions and, therefore, is 

the recommended choice for use in practical applications. The reason for these different 

conclusions has been carefully investigated from different standpoints and with the 

help of simplified models. 

The roots of the discrepancy are found in the simplifying assumptions with regards 

to assumed buckling modes used as the basis of  many analytical investigations and 

essentially in the fact that adopting the deformation theory of plasticity contributes to 

counterbalance the excessive stiffness induced by kinematically constraining the 

cylinders to follow predefined buckling modes, thus providing results that are only 

apparently more in line with the experimental findings. 

Additional numerical and experimental work would be expedient in order to extend the 

analysis to cylinders subjected to axial compression but made of materials different from 

aluminium, as well as to other structures or loading conditions.  This course of action would 

be also beneficial in order to inform changes in the current design standards regarding 

buckling calculations based on analytical or FEA. 
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Appendix   

A1.  Equations used for the deformation theory of plasticity 

The extension of the Ramberg-Osgood law (2.1) to the case of a multi-axial stress 

state using the von Mises formulation (   theory) results in the following path-

independent relationship (Simulia, 2011) governing the deformation theory of 

plasticity: 

   (   )       (    )       
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        (A.1) 

where    and   denote the strain and stress tensors, and       and       denote the 

deviatoric and spherical parts of the stress tensor, respectively.  

Since the deformation theory of plasticity requires the same input values as the 

Ramberg-Osgood formula with the sole addition of the Poisson’s ratio, the material 

constants of Table 2.5 have been used. 

A2.  Equations used for the flow theory of plasticity 

The    flow theory of plasticity theory (Simo and Hughes, 1998; Simulia, 2011), 

available in ABAQUS and used in the numerical simulations, is based on the additive 

decomposition of the spatial rate of the deformation tensor  ̇ into its elastic and plastic 

parts  ̇  and  ̇ , respectively, 

 ̇   ̇   ̇    (A.2) 

The rate of the Cauchy stress tensor  ̇ is obtained from the elastic part of the strain 

tensor through the isotropic linear elastic relation 

 ̇     ̇        ̇       (A.3) 

where   and   are Lamé’s elastic constants and   is the rank-2 identity tensor.  

The von Mises yield function   is  
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where  ̅ represents the uniaxial yield strength which, in order to model nonlinear 

isotropic hardening, is assumed to be an increasing function of the equivalent plastic 

strain   
  

, defined at time   as follows 

  
  ( )  ∫ ‖ ̇ ( )‖   

 

  
    (A.5) 

The evolution of the plastic strain is given by the associated flow rule: 

 ̇   ̇ (
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where  ̇ is a plastic multiplier which must satisfy the complementarity conditions: 

 ̇       (    
  )      ̇  (    

  )    (A.7) 

 

A3.  Analytically derived buckling formulas derived by 

Batterman  

The buckling stresses were analytically derived by Batterman (1965) in the 

following manner.  In the case of the flow theory of plasticity the buckling stress is 

denoted by    and the following expression was obtained: 
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where         are the thickness, radius, length of the cylinder and number of half 

waves, respectively,         ,    being tangent modulus of the material evaluated at 

stress level   on a uniaxial stress-strain test curve and   being the elastic Young’s 

modulus. 

In the case of the deformation theory of plasticity the buckling stress is denoted by 

   and the following expression was obtained: 
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with 
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where         ,    being the secant modulus of the material evaluated at stress level 

  on a uniaxial stress-strain test curve. 


