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Abstract: The presence of a “ladder” structure in the airfoil tonal noise
was discovered in the 1970s, but its mechanism hitherto remains a sub-
ject of continual investigation in the research community. Based on the
measured noise results and some numerical analysis presented in this
letter, the variations of four types of airfoil tonal noise frequencies with
the flow velocity were analyzed individually. The ladder structure is pro-
posed to be caused by the acoustic/hydrodynamic frequency lag
between the scattering of the boundary layer instability noise and the
discrete noise produced by an aeroacoustic feedback loop.
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1. Introduction

This letter is concerned with an experimental investigation into a unique “ladder” fea-
ture of the airfoil tonal noise. Figure 1(a) shows a typical spectrum of the noise radi-
ated by an airfoil in a low Reynolds number laminar flow. The figure reveals a broad
spectral hump centered on frequency, fs, in addition to the presence of a number of
discrete tones occurring at frequency fn. The frequency of the tone of the highest sound
pressure level is defined here to be the “dominant” frequency, fn-max. Paterson et al.1

have performed a systematic study on isolated airfoil noise in an anechoic environ-
ment. Based on calculations of the laminar boundary layer on a flat plate, they pro-
posed the following empirical formula for the main tonal central frequency fs:

fs ¼ 0:011U1:5= Cvð Þ0:5; (1)

where U is the velocity, C is the chord, and v is the kinematic viscosity of air. An
assumption made in Eq. (1) is that fs is independent of the airfoil angle of attack.
Another key observation by Paterson et al.1 is the existence of the so-called ladder struc-
ture for the dependence of tonal frequency on flow velocity. These two frequency
dependencies are illustrated in Fig. 1(b), which indicates that over a small velocity range,
the discrete frequency of the tone fn, follows a power law of 0.8. As the velocity is
increased, the dominant tonal frequency fn-max is observed to follow a smooth curve but
then jumps to another parallel curve with the same U0.8 dependence. It appears that sev-
eral frequency jumps can occur over the velocity range. The U1.5 dependency shown in
Eq. (1) therefore represents the average frequency variation of the dominant tone.

Using the experimental results of Paterson et al.,1 Tam2 deduced the following
modified frequency evolution law for the discrete tones, fn:

fn ¼ 6:85nU0:8; (2)
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where n is an integer. In an attempt to explain the presence of multiple tones in the
spectrum Tam2 proposed a self-excited feedback-loop concept and conjectured that
hydrodynamic instabilities are shed into the downstream wake, which then becomes
localized at some distances downstream of the trailing edge. Some of these wake insta-
bility modes are unstable where they radiate acoustic wave upstream and disturb the
boundary layer near the trailing edge. A closed loop is then formed in which instability
modes produce sound that then drives the instability mode, and so on. In Tam’s model,2

the nth tonal frequency occurs when the total phase change around the loop is equal to
2pn. Whilst this phase condition may explain the existence of several distinct tones in
the noise spectrum [e.g., Fig. 1(a)], it cannot explain the ladder structure observed in the
noise data because the feedback loop model cannot predict the tone amplitudes.

Tam’s feedback hypothesis was later modified by Arbey and Bataille.3 They
argued that the broadband component of the noise spectrum was due to diffraction
and scattering of Tollmien–Schlichting (TS) waves at the trailing edge, whereas the dis-
crete tone contributions are related to an alternative aeroacoustic feedback mechanism.
In their model, discrete tone occurring at frequency fn is due to a feedback loop
between the boundary layer instabilities at the trailing edge and the upstream propa-
gating acoustic wave that reinforces the point upstream of the trailing edge at which
the instabilities originated. This modified acoustic feedback loop, however, remains
incapable of explaining why the dominant tone frequencies fn-max tend to jump to other
rungs as the flow velocity progresses. Based on the feedback model,3 Kingan and
Pearse4 proposed a theoretical model to predict the discrete tone frequency (fn) over
the range of frequencies that satisfy integer values of n for which TS wave amplifica-
tion occurs. In the paper they compare the frequency that corresponds to the maxi-
mum amplification of TS wave (fTS-max) with the multidiscrete tone frequencies fn over
several flow velocities. They found that fTS-max and fn scale in proportion to approxi-
mately U1.5 and U0.8, respectively. They then used the difference in the velocity scaling
laws to explain the ladder structure. This conjecture has yet to be proven experimen-
tally. In addition, the paper neither confirms the role of the central frequency of the
tonal hump (fs), nor clarifies the mechanism under which the dominant tone frequen-
cies (fn-max) are affected by the different velocity scaling laws. Other authors, such as
McAlpine et al.5 and Desquesnes et al.,6 propose that the frequency of the dominant
discrete tone (fn-max), the frequency corresponding to the maximum amplification of
the TS wave (fTS-max) and the tonal hump frequency (fs) tend to equal each other irre-
spective of the Reynolds number. The questions remain, however, about the physical
implication of linking all these frequencies over a relatively large range of Reynolds
numbers and their roles in the ladder structure.

FIG. 1. (a) Illustrations of the fs, main tonal frequency; fn, discrete frequencies; and fn-max, dominant discrete
frequency, in a typical airfoil tonal noise spectrum. (b) Scaling law of fs (– – –) based on the Paterson et al.
(Ref. 1) formula [Eq. (1)]. The variations of fn with velocity (—) can be described by the Tam (Ref. 2) formula
[Eq. (2)]. The ladder structure is shown here.
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The presence of an aeroacoustic feedback loop between the hydrodynamic
instabilities and the radiated sound has been proven to play an essential role in the
mechanism of airfoil tonal noise generation.2–6 However, the precise details and
nature of this loop and how it is related to the ladder structure have not been
unequivocally established. A fundamental issue that remains to be addressed is the
mechanism that creates the ladder structure of the airfoil tones with increasing flow
velocity. This letter will study the tonal noise generated by laminar airfoil in the con-
text of four frequency types—fs, fn, fn-max, and fTS-max—and discuss how they will
vary with flow velocity.

2. Experiment setup

Airfoil noise measurements under free field conditions were made in the open jet wind
tunnel at the University of Southampton, which is situated in an 8� 8� 8 m anechoic
chamber. The nozzle exit is of rectangular section with dimensions of 0.15� 0.45 m.
The turbulence intensity in the potential core is typically 0.1% at a Mach number of
0.3. The exit flow is also uniform (with less than 6% variation) in the spanwise direc-
tion inside the potential core. Background noise levels are very low and have been pro-
ven to be due to turbulent mixing in the jet. A more detailed description of this facility
and its characteristics can be found in Chong et al.7

The airfoil under investigation here is an NACA0012 with a chord of 0.15 m
and a span of 0.45 m. The airfoil has an aspect ratio of 3 to maintain a two-
dimensional (2D) flow over most of its surface. The airfoil was held in the potential
core by two side plates, which were attached to the nozzle lips. Following the wind
tunnel correction scheme of Brooks et al.,8 in this study an “effective” angle of attack
(h) of 1.4� was determined from a “geometrical” angle of 5�. The range of jet velocity
under investigation here is from 25 to 50 m s�1, corresponding to a range of Reynolds
numbers, Re, of 2.5–5.0� 105 based on the chord length. A microphone at polar angle
of f¼ 90� and at 1.25 m from the airfoil trailing edge was used to measure the far field
noise radiated from the airfoil. The microphone was mounted at the mid-span plane of
the airfoil model. Noise data were sampled at 30 kHz for 13.33 s using a 24 bit analog-
to-digital card. The digitized data were low-pass filtered at 15 kHz to avoid signal ali-
asing. The power spectra density of the noise was then obtained using a 4096 point
fast Fourier transform and a Hamming window.

It is useful to note that the noise of the wind tunnel should not affect the feed-
back loop considered here. The existence of the loop itself needs to acoustically excite
the origin of the boundary layer instability wave (on the airfoil surface) that sustains
the noise source in the first place. Acoustical lock-on to other experimental facilities is
unlikely as there is no hydrodynamic process present in the experiment to sustain such
a loop, especially in an anechoic chamber. The boundary layers on both side-plates
that hold the airfoil model will also be turbulent due to the sidewall boundary layer
contamination effect. This is again unlikely to produce instability noise that might be
able to generate extraneous feedback loops. The tonal hump and discrete tones
frequencies (fs, fn, and fn-max) measured in the present experiment are of the genuine
values pertaining to a laminar airfoil.

3. Linear stability analysis

Linear stability analysis was undertaken of the boundary layer flow over the airfoil
surface. Disturbances in the boundary layer are assumed to be spatially growing TS
waves of frequency x and slowly varying complex wave number (a¼ arþ iai). Follow-
ing the method described by McAlpine et al.5 and Kingan and Pearse,4 the stream
function w(x, y) associated with the TS waves can be expressed in the form as

w x; yð Þ ¼ / yð Þ exp i
ð

a xð Þdx� xt
� �� �

; (3)
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where (x, y) is a Cartesian coordinate system such that x is the streamwise direction
and y is the wall-normal direction, / is the perturbation amplitude, and t is time. The
wave number of the least stable mode at any streamwise position x on the airfoil sur-
face, though might be obtained by the propagation theory of Kim et al.,9 has found to
be adequately described by the classical Orr–Sommerfeld equation as

/ 4ð Þ � 2a2/ 2ð Þ þ a4/ ¼ iRe aU � xð Þ / 2ð Þ � a2/
� �

� aU 2ð Þ/
n o

; (4)

where Re is the Reynolds number and U is the velocity profile at point x along the air-
foil surface, and the superscripts on / and U denote differentiation with respect to y.

In order to solve Eq. (4) to obtain the least stable modal wave numbers at a
fixed (Re, x) the velocity profile U(y) must be known at a number of positions x along
the airfoil surface. As boundary layer profiles were not measured in the present study,
estimates of U(y) were made using the public-domain code XFOIL in a similar approach to
Kingan and Pearse.4 In the present study, XFOIL was used to estimate the boundary layer
shape factor at a number of positions along the chord of the pressure side of an
NACA0012 airfoil, between the leading edge and the trailing edge in 2% chord intervals.
As the pressure gradient on an airfoil varies along the chord, the Falkner–Skan velocity
profile provides a suitable representation of the flow over the airfoil surface. Because each
Falkner–Skan profile is associated with a unique shape factor, the velocity profile at each
station that matches the predicted shape factor under consideration can be obtained.

Numerical solutions to the Orr–Sommerfeld equation of Eq. (4) were obtained
using the Chebyshev matrix technique described by Kingan and Pearse.4 The first point
along the airfoil chord xo at which an instability first appears is identified from the
position at which Im{ai}is less than 0. The amplification A of the TS wave, at any fre-
quency, between xo and near the trailing edge xn is

A ¼ exp
�
�
ðxn

xo

aiðxÞdx
�
: (5)

4. Discussion of results

Figure 2(a) shows the distributions of the TS wave amplification A (at airfoil pressure
side) as a function of frequency over velocity range of 22–40 ms�1 at h¼ 1.4�. Frequen-
cies that correspond to the maximum level of amplification, identified as fTS-max, at
each flow velocity are plotted in Fig. 2(b). fTS-max is found to scale with U1.55.

The discrete tone frequency (fn) over the range of frequencies for which TS
wave amplification occurs can be predicted by4

F fnð Þ �
1

2p

ðxn

xo

ar xð Þdxþ fnL
co �U1;L

þ 1
2
¼ n; (6)

where n¼ 1, 2, 3, and so on. The first term on the right-hand side accounts for the
phase change due to TS waves of wave number ar convecting between xo (first point of
instability) to xn (near the trailing edge). The second term accounts for the phase
change due to the acoustic wave propagating between xn back to xo. Note that
L¼ (xn� xo), where co is the speed of sound and U1,L is the average freestream veloc-
ity between xo and xn. The factor of 1/2 in Eq. (6) accounts for the 180� phase change
due to the Kutta condition at the trailing edge.3,4 The presence of the numerous dis-
crete tones fn in the measured noise spectra, such as those shown in Fig. 1(a), indicates
that at a given velocity, F(fn) is satisfied for a wide range of n values. Each discrete
frequency fn thus corresponds to when the phase function F(fn) takes integer values n.
Applying this argument to the airfoil, the discrete frequencies fn satisfying Eq. (6) over
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a range of velocities were calculated. The variations of fn(n¼ 11–19) with U computed
from Eq. (6) are plotted in Fig. 2(b). The theoretical discrete frequencies fn follow a ve-
locity power law of approximately 0.8, similar to the value proposed by Tam.2 Figure
2(b) also includes the frequencies of the most amplified instability waves fTS-max versus
U, which clearly demonstrates that fTS-max can be best-fitted linearly with U, and it is
not predicted to follow the classical ladder structure caused by the variation of the
“rungs” of discrete tones fn with U as shown in Fig. 1(b). However, fTS-max is predicted
to follow closely the U1.5 scaling law as observed by Paterson et al.1 for the main tonal
central frequency (fs). This suggests a close physical relationship between the mecha-
nisms producing the two frequencies. Moderately good agreement (about 10%–22%
discrepancy) between the most amplified TS wave frequencies (fTS-max) and the meas-
ured main tonal central frequencies (fs) has been observed. Considering the level of
approximations for the linear stability analysis, such an error is usually acceptable for

FIG. 2. (Color online) (a) Maximum TS waves amplification A (at airfoil pressure side) calculated
for U¼ 22–40 ms�1 and at h¼ 1.4�. (b) Variations of the predicted fn (-- � --) for n¼ 11–19 and fTS-max (–*–)
against U.

FIG. 3. (Color online) (a) Noise spectra (dB/Hz) presented at U¼ 25.9, 30.4, 34.7, 39.6, and 47.2 m s�1. Each
discrete tone frequency fn at a particular U is represented by T1, T2, T3, and so on, for the different tone groups.
The sequence of the solid arrow lines (fi) shows the variations of fn-max with respect to U. (b) Variations of the
measured fn (-- � --) for T3–T8, fS (–*–) and fn-max (h) against U. All the data presented here were determined
from the spectra in (a).
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the prediction of the most amplified frequency. It is worth citing the results of McAl-
pine et al.,5 which in one particular case the fs was explicitly linked to the fTS-max
where the error was 23%.

The results in Fig. 2(b) may provide an explanation for the mechanism of the
ladder structure for laminar airfoils. The spectra shape pertaining to the tonal central
frequency fs, which features a broadband hump, has been linked in the past to that of
the TS instability wave.3 The TS wave is thus the main energy source that sustains the
aeroacoustic feedback loop. At a particular value of U, the discrete frequencies fn are
produced by the resonant condition of the feedback loop but they must be contained
within the lower and upper limits of the fs envelope [indicated by a and b, respectively,
in Fig. 1(a)]. In other words, fn (for a particular n value), fs, and fTS-max must all
increase with velocity, albeit at different rates.

The characteristics of the ladder structure are now illustrated with the meas-
ured noise results in Figs. 3(a) and 3(b). Figure 3(a) shows the spectra of the airfoil
noise at U¼ 25.9, 30.4, 34.7, 39.6, and 47.2 m s�1. Note that each spectrum is
increased by 20 dB relative to the spectrum at the next lower velocity in order to sepa-
rate them on the figure. At the lowest velocity of U¼ 25.9 m s�1, feedback loop is
expected to be present due to the existence of the multiple discrete tones fn. Each dis-
crete tone is labeled T1, T2, T3, and so on. It is important to recognize that each tone
component belongs to an n value associated with the feedback loop, as shown in Fig.
3(b). At U¼ 25.9 m s�1 the most dominant tone frequency fn-max of T3 coincides with the
peak of the broadband hump fs. Other discrete tones fn are also observed to occur around
the broadband hump. At U¼ 30.4 m s�1, tone T3 begins to lag in frequency relative to
the peak of the broadband hump (fs) due to its lower rate of change with velocity, but
still maintains the largest amplitude at this particular flow velocity. However, at
U¼ 34.7 m s�1, while T3 lags further behind in frequency compared with the fs, T4 has
now emerged as the particular tone component that is closest to the broadband hump
peak. At this instant T4 has replaced T3 as the new dominant tone component and a lad-
der jump has occurred. Another ladder jump also occurs at U¼ 39.6 m s�1 from which
T5 becomes the most dominant tone component. As U further increases to 47.2 m s�1,
the most dominant tone frequency fn-max jumps to a new tone component of T7.

Each clearly identifiable discrete tone frequency fn obtained from the experi-
ments is tabulated in Table 1 for the U¼ 30.4 m s�1 case. fn predicted from Eq. (6) are
also included in Table 1 for comparison. Excellent agreement is observed for the five
tone frequencies deduced from the experiment with the prediction from n¼ 12 to 16.
The average frequency spacing, Df between adjacent tones obtained both in the experi-
ment and prediction is about 118–120 Hz.

5. Conclusion

The most dominant instability tone frequency fn-max and its variation with velocity have
been investigated experimentally, in which a classical ladder structure was produced. An
aeroacoustic feedback loop alone cannot explain the existence of the ladder structure
because it only explains the discrete tone frequencies fn but not their amplitudes. Some

TABLE 1. Summary of predicted and measured discrete tone frequencies at U¼ 30.4 m s�1 and h¼ 1.4�.

Kingan and Pearse’s F(f) [Eq. (6)] Present experimental result

fn (Hz)
n¼ 12 1351 1351
13 1468 1466
14 1585 1596
15 1705 1701
16 1828 1821
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authors have attempted to link the most dominant tone frequency (fn-max)with the fre-
quency of the maximum amplification of the TS waves (fTS-max).5,6 Since the ladder
structure is originated from the variations of fn-max with U, one would expect fTS-max to
also exhibit the ladder structure in the spectrum. We have studied the variation of
fTS-max at the airfoil’s pressure side with flow velocity by solving the Orr–Sommerfeld
equation. When the results are plotted in a log–log diagram in Fig. 2(b), no ladder struc-
ture is observed. However, these frequencies can be best fitted linearly and they follow
the U1.5 scaling law closely, which agrees very well with Paterson et al.1 for the peak fre-
quency of the broadband hump (fs). This means that it is more meaningful to relate
fTS-max with fs. On the other hand, we have also found that each discrete tone fn follows
closely the U0.8 scaling law, in conjunction with Tam’s correlation.2

This difference in scaling laws thus suggests that the ladder structure is caused
by the frequency lag between the maximum TS amplification (proportional to U1.5,
which eventually produces the broadband hump) and the multiple discrete tones [pro-
portional to U0.8, which is produced by an aeroacoustic feedback model explained in
Eq. (6)]. The energy source for sustaining the aeroacoustic feedback loop comes from
the TS waves. Therefore, the discrete tones should always embed within the frequency
band of the broadband hump. It is important to note that the ladder jumping will
therefore always be contained within the frequency band of the broadband hump.

The following summary can be described with the three illustrations (I), (II),
and (III) shown in Fig. 3(b). When an airfoil is at a small angle of attack and the flow
velocity is just sufficient to initiate tonal noise, the multiple discrete tones will occur
around the symmetry of the frequency at fs as depicted in (I). It is postulated that at
this initial stage fn-max� fs [e.g., see the U¼ 25.9 m s�1 case in Figs. 3(a) and 3(b)]. As
illustrated in (II), when the flow velocity increases, fs increases at a faster rate than any
of the discrete tones. At some points in (III), a new tonal mode will eventually replace
the previous most dominant tone (at lower frequency) to coincide with the peak of the
broadband hump [e.g., see the U¼ 34.7 m s�1 case in Figs. 3(a) and 3(b)]. This is also
the instance when a jump in frequency occurs as part of the ladder. This process will
be repeated when the flow velocity is increased further until several ladder jumps
occur, and be terminated when transition begins to occur near the trailing edge of the
airfoil’s pressure side at a sufficiently high Reynolds number.
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